
One Page R Data Science
Coding with Style

Graham.Williams@togaware.com

3rd June 2018

Visit https://essentials.togaware.com/onepagers for more Essentials.

Data scientists write programs to ingest, manage, wrangle, visualise, analyse and model data
in many ways. It is an art to be able to communicate our explorations and understandings
through a language, albeit a programming language. Of course our programs must be executable
by computers but computers care little about our programs except that they be syntactically
correct. Our focus should be on engaging others to read and understand the narratives we present
through our programs.

In this chapter we present simple stylistic guidelines for programming in R that support the
transparency of our programs. We should aim to write programs that clearly and effectively
communicate the story of our data to others. Our programming style aims to ensure consistency
and ease our understanding whilst of course also encouraging correct programs for execution by
computer.

Through this guide new R commands will be introduced. The reader is encouraged to review the
command’s documentation and understand what the command does. Help is obtained using the
? command as in:
?read.csv

Documentation on a particular package can be obtained using the help= option of library():
library(help=rattle)

This chapter is intended to be hands on. To learn effectively the reader is encouraged to run R
locally (e.g., RStudio or Emacs with ESS mode) and to replicate all commands as they appear
here. Check that output is the same and it is clear how it is generated. Try some variations.
Explore.

Copyright © 2000-2018 Graham Williams. This work is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License allowing this work to be copied, distributed, or adapted, with
attribution and provided under the same license.

https://essentials.togaware.com/onepagers
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

One Page R Data Science Coding with Style

1 Why We Should Care

Programming is an art and a way to express ourselves. Often that expression is unique to
us individually. Just as we can often ascertain who the author is of a play or the artist of a
painting from their style we can often tell the programmer from the program coding structures
and styles.

As we write programs we should keep in mind that something like 90% of a programmers’
time (at least in business and government) is spent reading and modifying and extending other
programmers’ code. We need to facilitate the task—so that others can quickly come to a clear
understanding of the narrative.

As data scientists we also practice this art of programming and indeed even more so to share the
narrative of what we discover through our living and breathing of data. Writing our programs
so that others understand why and how we analysed our data is crucial. Data science is so much
more than simply building black box models—we should be seeking to expose and share the
process and the knowledge that is discovered from the data.

Data scientists rarely begin a new project with an empty coding sheet. Regularly we take our
own or other’s code as a starting point and begin from that. We find code on Stack Overflow or
elsewhere on the Internet and modify it to suit our needs. We collect templates from other data
scientists and build from there, tuning the templates for our specific needs and datasets.

In being comfortable to share our code and narratives with others we often develop a style. Our
style is personal to us as we innovate and express ourselves and we need consistency in how we
do that. Often a style guide helps us as we journey through a new language and gives us a
foundation for developing, over time, our own style.

A style guide is useful for sharing our tips and tricks for communicating clearly through our
programs—our expression of how to solve a problem or actually how we model the world. We
express this in the form of a language—a language that also happens to be executable by a
computer. In this language we follow precisely specified syntax/grammar to develop sentences,
paragraphs, and whole stories. Whilst there is infinite leeway in how we express ourselves and we
each express ourselves differently, we share a common set of principles as our style guide.

The style guide here has evolved from over 30 years of programming and data experience.
Nonetheless we note that style changes over time. Change can be motivated by changes in
the technology itself and we should allow variation as we mature and learn and change our
views.

Irrespective of whether the specific style suggestions here suit you or not, when coding do aim to
communicate to other readers in the first instance. When we write programs we write for others
to easily read and to learn from and to build upon.

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 1 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

2 Naming Files

1. Files containing R code use the uppercase .R extension. This aligns with the fact that the
language is unambiguously called “R” and not “r.”

Preferred
power_analysis.R

Discouraged
power_analysis.r

2. Some files may contain support functions that we have written to help us repeat tasks
more easily. Name the file to match the name of the function defined within the file. For
example, if the support function we’ve defined in the file is myFancyPlot() then name the
file as below. This clearly differentiates support function filenames from analysis scripts
and we have a ready record of the support functions we might have developed simply by
listing the folder contents.

Preferred
myFancyPlot.R

Discouraged
utility_functions.R
MyFancyPlot.R
my_fancy_plot.R
my.fancy.plot.R
my_fancy_plot.r

3. R binary data filenames end in “.RData”. This is descriptive of the file containing data for
R and conforms to a capitalised naming scheme.

Preferred
weather.RData

Discouraged
weather.rdata
weather.Rdata
weather.rData

4. Standard file names use lowercase where there is a choice.

Preferred
weather.csv

Discouraged
weather.CSV

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 2 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

3 Multiple File Scripts

5. For multiple scripts associated with a project that have a processing order associated with
them use a simple two digit number prefix scheme. Separating by 10’s allows additional
script files to be added into the sequence later.

Sometimes this can become a burden. Users find themselves reverting to a single script file
for their code. It requires some judgement and discipline to modularise your code in this
way, and maybe some assistance too from the integrated development environment being
used.

Suggested
00_setup.R
10_ingest.R
20_observe.R
30_process.R
40_meta.R
50_save.R
60_classification.R
62_rpart.R
64_randomForest.R
66_xgboost.R
68_h20.R
70_regression.R
72_lm.R
74_rpart.R
76_mxnet.R
80_evaluate.R
90_deploy.R
99_all.R

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 3 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

4 Naming Objects

6. Function names begin lowercase with capitalised verbs. A common alternative is to use
underscore to separate words but we use this specifically for variables.

Preferred
displayPlotAgain()

Discouraged
DisplayPlotAgain()
displayplotagain()
display.plot.again()
display_plot_again()

7. Variable names use underscore separated nouns. A very common alternative is to use
a period in place of the underscore. However, the period is often used to identify class
hierarchies in R and the period has specific meanings in many database systems which
presents an issue when importing from and exporting to databases.

Preferred
num_frames <- 10

Discouraged
num.frames <- 10
numframes <- 10
numFrames <- 10

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 4 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

5 Functions

8. Function argument names use period separated nouns. Function argument names do
not risk being confused with class hierarchies and the style is useful in differentiating the
argument name from the argument value. Within the body of the function it is also useful
to be reminded of which variables are function arguments and which are local variables.

Preferred
buildCyc(num.frames=10)
buildCyc(num.frames=num_frames)

Discouraged
buildCyc(num_frames=10)
buildCyc(numframes=10)
buildCyc(numFrames=10)

9. Keep variable and function names shorter but self explanatory. A long variable or
function name is problematic with layout and similar names are hard to tell apart. Single
letter names like x and y are often used within functions and facilitate understanding,
particularly for mathematically oriented functions but should otherwise be avoided. l
Preferred
Perform addition.

addSquares <- function(x, y)
{

return(x^2 + y^2)
}

Discouraged
Perform addition.

addSquares <- function(first_argument, second_argument)
{

return(first_argument^2 + second_argument^2)
}

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 5 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

6 Comments

10. Use a single # to introduce ordinary comments and separate comments from code with
a single empty line before and after the comment. Comments should be full sentences
beginning with a capital and ending with a full stop.

Preferred
How many locations are represented in the dataset.

ds$location %>%
unique() %>%
length()

Identify variables that have a single value.

ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->

constants

11. Sections might begin with all uppercase titles and subsections with initial capital titles.
The last four dashes at the end of the comment are a section marker supported by RStudio.
Other conventions are available for structuring a document and different environments
support different conventions.

Preferred
DATA WRANGLING ----

Normalise Variable Names ----

Review the names of the dataset columns.

names(ds)

Normalise variable names and confirm they are as expected.

names(ds) %<>% rattle::normVarNames() %T>% print()

Specifically Wrangle weatherAUS ----

Convert the character variable 'date' to a Date data type.

class(ds$date)
ds$date %<>%

lubridate::ymd() %>%
as.Date() %T>%
{class(.); print()}

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 6 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

7 Layout

12. Keep lines to less then 80 characters for easier reading and fitting on a printed page.

13. Align curly braces so that an opening curly brace is on a line by itself. This is at odds
with many style guides. My motivation is that the open and close curly braces belong to
each other more so than the closing curly brace belonging to the keyword (while in the
example). The extra white space helps to reduce code clutter. This style also makes it
easier to comment out, for example, just the line containing the while and still have valid
syntax. We tend not to need to foucs so much any more on reducing the number of lines
in our code so we can now avoid Egyptian brackets.

Preferred
while (blueSky())
{

openTheWindows()
doSomeResearch()

}
retireForTheDay()

Alternative
while (blueSky()) {

openTheWindows()
doSomeResearch()

}
retireForTheDay()

14. If a code block contains a single statement, then curly braces remain useful to emphasise
the limit of the code block; however, some prefer to drop them.

Preferred
while (blueSky())
{

doSomeResearch()
}
retireForTheDay()

Alternatives
while (blueSky())

doSomeResearch()
retireForTheDay()

while (blueSky()) doSomeResearch()
retireForTheDay()

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 7 of 20

Generated 3rd June 2018 5:05pm

https://blog.codinghorror.com/new-programming-jargon/

One Page R Data Science Coding with Style

8 If-Else Issue

15. R is an interpretive language and encourages interactive development of code within the R
console. Consider typing the following code into the R console.
if (TRUE)
{

seed <- 42
}
else
{

seed <- 666
}

After the first closing brace the interpreter identifies and executes a syntactically valid
statement (if with no else). The following else is then a syntactic error.
Error: unexpected 'else' in "else"

> source("examples.R")
Error in source("examples.R") : tmp.R:5:1: unexpected 'else'
4: }
5: else

^

This is not an issue when embedding the if statement inside a block of code as within curly
braces since the text we enter is not parsed until we hit the final closing brace.
{

if (TRUE)
{

seed <- 42
}
else
{

seed <- 666
}

}

Another solution is to move the else to the line with the closing braces to inform the
interpreter that we have more to come:
if (TRUE)
{

seed <- 42
} else
{

seed <- 666
}

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 8 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

9 Indentation

16. Use a consistent indentation. I personally prefer 2 spaces within both Emacs ESS and
RStudio with a good font (e.g., Courier font in RStudio works well but Courier 10picth is
too compressed). Some argue that 2 spaces is not enough to show the structure when using
smaller fonts. If it is an issue, then try 4 or choose a different font. We still often have
limited lengths on lines on some forms of displays where we might want to share our code
and about 80 characters seems about right. Indenting 8 characters is probably too much
because it makes it difficult to read through the code with such large leaps for our eyes to
follow to the right. Nonetheless, there are plenty of tools to reindent to a different level as
we choose.

Preferred
window_delete <- function(action, window)
{

if (action %in% c("quit", "ask"))
{

ans <- TRUE
msg <- "Terminate?"
if (! dialog(msg))

ans <- TRUE
else

if (action == "quit")
quit(save="no")

else
ans <- FALSE

}
return(ans)

}

Not Ideal
window_delete <- function(action, window)
{

if (action %in% c("quit", "ask"))
{

ans <- TRUE
msg <- "Terminate?"
if (! dialog(msg))

ans <- TRUE
else

if (action == "quit")
quit(save="no")

else
ans <- FALSE

}
return(ans)

}

17. Always use spaces rather than the invisible tab character.

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 9 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

10 Alignment

18. Align the assignment operator for blocks of assignments. The rationale for this style sug-
gestion is that it is easier for us to read the assignments in a tabular form than it is when
it is jagged. This is akin to reading data in tables—such data is much easier to read when
it is aligned. Space is used to enhance readability.

Preferred
a <- 42
another <- 666
b <- mean(x)
brother <- sum(x)/length(x)

Default
a <- 42
another <- 666
b <- mean(x)
brother <- sum(x)/length(x)

19. In the same vein we might think to align the stringr::%>% operator in pipelines and the
base::+ operator for ggplot2 (Wickham and Chang, 2016) layers. This provides a visual
symmetry and avoids the operators being lost amongst the text. Such alignment though
requires extra work and is not supported by editors. Also, there is a risk the operator too
far to the right is overlooked on an inspection of the code.

Preferred
ds <- weatherAUS
names(ds) <- rattle::normVarNames(names(ds))
ds %>%

group_by(location) %>%
mutate(rainfall=cumsum(risk_mm)) %>%
ggplot(aes(date, rainfall)) +
geom_line() +
facet_wrap(~location) +
theme(axis.text.x=element_text(angle=90))

Alternative
ds <- weatherAUS
names(ds) <- rattle::normVarNames(names(ds))
ds %>%

group_by(location) %>%
mutate(rainfall=cumsum(risk_mm)) %>%
ggplot(aes(date, rainfall)) +
geom_line() +
facet_wrap(~location) +
theme(axis.text.x=element_text(angle=90))

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 10 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

11 Sub-Block Alignment

20. An interesting variation on the alignment of pipelines including graphics layering is to
indent the graphics layering and include it within a code block (surrounded by curly braces).
This highlights the graphics layering as a different type of concept to the data pipeline and
ensures the graphics layering stands out as a separate stanza to the pipeline narrative.
Note that a period is then required in the ggplot2::ggplot() call to access the pipelined
dataset. The pipeline can of course continue on from this expression block. Here we show
it being piped into a dimRed::print() to have the plot displayed and then saved into a
variable for later processing. This style was suggested by Michael Thompson.

Preferred
ds <- weatherAUS
names(ds) <- rattle::normVarNames(names(ds))
ds %>%

group_by(location) %>%
mutate(rainfall=cumsum(risk_mm)) %>%
{

ggplot(., aes(date, rainfall)) +
geom_line() +
facet_wrap(~location) +
theme(axis.text.x=element_text(angle=90))

} %T>%
print() ->

plot_cum_rainfall_by_location

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 11 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

12 Functions

21. Functions should be no longer than a screen or a page. Long functions generally suggest
the opportunity to consider more modular design. Take the opportunity to split the larger
function into smaller functions.

22. When referring to a function in text include the empty round brackets to make it clear it
is a function reference as in rpart().

23. Generally prefer a single base::return() from a function. Understanding a function with
multiple and nested returns can be difficult. Sometimes though, particularly for simple
functions as in the alternative below, multiple returns work just fine.

Preferred
factorial <- function(x)
{

if (x==1)
{

result <- 1
}
else
{

result <- x * factorial(x-1)
}

return(result)
}

Alternative
factorial <- function(x)
{

if (x==1)
{

return(1)
}
else
{

return(x * factorial(x-1))
}

}

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 12 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

13 Function Definition Layout

24. Align function arguments in a function definition one per line. Aligning the = is also
recommended to make it easier to view what is going on by presenting the assignments as
a table.

Preferred
showDialPlot <- function(label = "UseR!",

value = 78,
dial.radius = 1,
label.cex = 3,
label.color = "black")

{
...

}

Alternative
showDialPlot <- function(label="UseR!",

value=78,
dial.radius=1,
label.cex=3,
label.color="black")

{
...

}

Discouraged
showDialPlot <- function(label="UseR!", value=78,

dial.radius=1, label.cex=3,
label.color="black")

{
...

}

showDialPlot <- function(label="UseR!",
value=78,
dial.radius=1,
label.cex=3,
label.color="black")

Alternative
showDialPlot <- function(

label="UseR!",
value=78,
dial.radius=1,
label.cex=3,
label.color="black"
)

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 13 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

14 Function Call Layout

25. Don’t add spaces around the = for named arguments in parameter lists. Visually this ties
the named arguments together and highlights this as a parameter list. This style is at odds
with the default R printing style and is the only situation where I tightly couple a binary
operator. In all other situations there should be a space around the operator.

Preferred
readr::read_csv(file="data.csv", skip=1e5, na=".", progress=FALSE)

Discouraged
read.csv(file = "data.csv", skip =

1e5, na = ".", progress
= FALSE)

26. For long lists of parameters improve readability using a table format by aligning on the =.

Preferred
readr::read_csv(file = "data.csv",

skip = 1e5,
na = ".",
progress = FALSE)

27. All but the final argument to a function call can be easily commented out. However, the
latter arguments are often optional and whilst exploring them we will likely comment them
out. An idiosyncratic alternative places the comma at the beginning of the line so that we
can easily comment out specific arguments except for the first one, which is usually the
most important argument and often non-optional. This is quite a common style amongst
SQL programmers and can be useful for R programming too.

Usual
dialPlot(value = 78,

label = "UseR!",
dial.radius = 1,
label.cex = 3,
label.color = "black")

Alternative
dialPlot(value = 78

, label = "UseR!"
, dial.radius = 1
, label.cex = 3
, label.color = "black"
)

Discouraged
dialPlot(value=78, label="UseR!", dial.radius=1,

label.cex=3, label.color="black")

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 14 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

15 Functions from Packages

28. R has a mechanism (called namespaces) for identifying the names of functions and variables
from specific packages. There is no rule that says a package provided by one author can
not use a function name already used by another package or by base R. Thus, functions
from one package might overwrite the definition of a function with the same name from
another package or from base R itself. A mechanism to ensure we are using the correct
function is to prefix the function call with the name of the package providing the function,
just like dplyr::mutate().

Generally in commentary we will use this notation to clearly identify the package which
provides the function. In our interactive R usage and in scripts we tend not to use the
namespace notation. It can clutter the code and arguably reduce its readability even
though there is the benefit of clearly identifying where the function comes from.

For common packages we tend not to use namespaces but for less well-known packages
a namespace at least on first usage provides valuable information. Also, when a package
provides a function that has the same name as a function in another namespace, it is useful
to explicitly supply the namespace prefix.

Preferred
library(dplyr) # Data wranlging, mutate().
library(lubridate) # Dates and time, ymd_hm().
library(ggplot2) # Visualize data.

ds <- get(dsname) %>%
mutate(timestamp=ymd_hm(paste(date, time))) %>%
ggplot(aes(timestamp, measure)) +
geom_line() +
geom_smooth()

Alternative
The use of the namespace prefix increases the verbosity of the presentation and that has a
negative impact on the readability of the code. However it makes it very clear where each
function comes from.
ds <- get(dsname) %>%

dplyr::mutate(timestamp=
lubridate::ymd_hm(paste(date, time))) %>%

ggplot2::ggplot(ggplot2::aes(timestamp, measure)) +
ggplot2::geom_line() +
ggplot2::geom_smooth()

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 15 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

16 Assignment

29. Avoid using base::= for assignment. It was introduced in S-Plus in the late 1990s as a
convenience but is ambiguous (named arguments in functions, mathematical concept of
equality). The traditional backward assignment operator base::<- implies a flow of data
and for readability is explicit about the intention.

Preferred
a <- 42
b <- mean(x)

Discouraged
a = 42
b = mean(x)

30. The forward assignment base::-> should generally be avoided. A single use case justifies it
in pipelines where logically we do an assignment at the end of a long sequence of operations.
As a side effect operator it is vitally important to highlight the assigned variable whenever
possible and so out-denting the variable after the forward assignment to highlight it is
recommended.

Preferred
ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->

constants

Traditional
constants <-

ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print()

Discouraged
ds[vars] %>%

sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->
constants

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 16 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

17 Miscellaneous

31. Do not use the semicolon to terminate a statement unless it makes a lot of sense to have
multiple statements on one line. Line breaks in R make the semicolon optional.

Preferred
threshold <- 0.7
maximum <- 1.5
minimum <- 0.1

Alternative
threshold <- 0.7; maximum <- 1.5; minimum <- 0.1

Discouraged
threshold <- 0.7;
maximum <- 1.5;
minimum <- 0.1;

32. Do not abbreviate TRUE and FALSE to T and F.

Preferred
is_windows <- FALSE
open_source <- TRUE

Discouraged
is_windows <- F
open_source <- T

33. Separate parameters in a function call with a comma followed by a space.

Preferred
dialPlot(value=78, label="UseR!", dial.radius=1)

Dicouraged
dialPlot(value=78,label="UseR!",dial.radius=1)

34. Ensure that files are under version control such as with github to allow recovery of old
versions of the file and to support multiple people working on the same files.

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 17 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

18 Good Practise

35. Ensure that files are under version control such as with github or bitbucket. This allows
recovery of old versions of the file and multiple people working on the same repository. It
also facilitates sharing of the material. If the material is not to be shared then bitbucket
is a good optoin for private repositories.

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 18 of 20

Generated 3rd June 2018 5:05pm

One Page R Data Science Coding with Style

19 Further Reading

The Rattle book (Williams, 2011), published by Springer, provides
a comprehensive introduction to data mining and analytics using
Rattle and R. It is available from Amazon. Rattle provides a graph-
ical user interface through which the user is able to load, explore,
visualise, and transform data, and to build, evaluate, and export
models. Through its Log tab it specifically aims to provide an R
template which can be exported and serve as the starting point for
further programming with data in R.

The Essentials of Data Science book (Williams, 2017a), published
by CRC Press, provides a comprehensive introduction to data sci-
ence through programming with data using R. It is available from
Amazon. The book provides a template based approach to doing
data science and knowledge discovery. Templates are provided for
data wrangling and model building. These serve as generic starting
points for programming with data, and are designed to require min-
imal effort to get started. Visit https://essentials.togaware.
com for further guides and templates.

There are many style guides available and the guidelines here are generally consistent and overlap
considerably with many others. I try to capture he motivation for each choice. My style choices
are based on my experience over 30 years of programming in very many different languages and
it should be recognised that some elements of style are personal preference and others have very
solid foundations. Unfortunately in reading some style guides the choices made are not always
explained and without the motivation we do not really have a basis to choose or to debate.

The guidelines at Google and from Hadley Wickham and Colin Gillespie are similar but I
have some of my own idiosyncrasies. Also see Wikipedia for an excellent summary of many
styles.

Rasmus Bååth, in The State of Naming Conventions in R, reviews naming conventions used in
R, finding that the initial lower case capitalised word scheme for functions was the most popular,
and dot separated names for arguments similarly. We are however seeing a migration away from
the dot in variable names as it is also used as a class separator for object oriented coding. Using
the underscore is now preferred.

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 19 of 20

Generated 3rd June 2018 5:05pm

https://bit.ly/essentials_data_science
https://bit.ly/essentials_data_science
https://bit.ly/rattle_data_mining
https://bit.ly/rattle_data_mining
https://essentials.togaware.com
https://essentials.togaware.com
https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html
https://csgillespie.wordpress.com/2010/11/23/r-style-guide/
http://en.wikipedia.org/wiki/Indent_style
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf

One Page R Data Science Coding with Style

20 References

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Wickham H, Chang W (2016). ggplot2: Create Elegant Data Visualisations Using the Grammar
of Graphics. R package version 2.2.1, URL https://CRAN.R-project.org/package=ggplot2.

Williams GJ (2009). “Rattle: A Data Mining GUI for R.” The R Journal, 1(2), 45–55. URL
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of excavating data for knowledge
discovery. Use R! Springer, New York.

Williams GJ (2017a). The Essentials of Data Science: Knowledge discovery using R. The R
Series. CRC Press.

Williams GJ (2017b). rattle: Graphical User Interface for Data Science in R. R package version
5.1.0, URL https://CRAN.R-project.org/package=rattle.

This document, sourced from StyleO.Rnw bitbucket revision 241, was processed by KnitR version
1.20 of 2018-02-20 10:11:46 UTC and took 4 seconds to process. It was generated by gjw on
Ubuntu 18.04 LTS.

Module: StyleO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 20 of 20

Generated 3rd June 2018 5:05pm

https://www.R-project.org/
https://CRAN.R-project.org/package=ggplot2
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
https://CRAN.R-project.org/package=rattle

	Why We Should Care
	Naming Files
	Multiple File Scripts
	Naming Objects
	Functions
	Comments
	Layout
	If-Else Issue
	Indentation
	Alignment
	Sub-Block Alignment
	Functions
	Function Definition Layout
	Function Call Layout
	Functions from Packages
	Assignment
	Miscellaneous
	Good Practise
	Further Reading
	References

